Assessment Schedule – 2010

Mathematics: Use geometric reasoning to solve problems (90153)

Evidence Statement

<table>
<thead>
<tr>
<th>Question Number</th>
<th>Achievement</th>
<th>Achievement with Merit</th>
<th>Achievement with Excellence</th>
<th>Scoring rubic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONE (a)</td>
<td>Use geometric reasoning to solve problems.</td>
<td>Use and state geometric reasoning in solving problems.</td>
<td>Solve an extended geometrical problem.</td>
<td>N0</td>
</tr>
</tbody>
</table>
| | $\angle AED = 69^\circ$
$\angle ADE = 180^\circ - 80^\circ - 69^\circ$
$= 31^\circ$ | $\angle AED = 69^\circ$ (vert opp \angles =)
$\angle ADE = 180^\circ - 80^\circ - 69^\circ$ (\angle sum \triangle)
$= 31^\circ$ | | N1 One angle correctly calculated |
| (b) | $\angle FJK = 62^\circ$
$\angle EFK = 180^\circ - 2 \times 62^\circ$
$= 56^\circ$ | $\angle FJK = 62^\circ$ (\angles on a line)
$\angle EFK = 180^\circ - 2 \times 62^\circ$
(coint \angles, // lines)
$= 56^\circ$
$\angle FJK = 62^\circ$ (base $\angle s = isos \triangle$)
OR equivalent. | | N2 One question part correctly calculated |
| (c) | Two steps towards proof correct. | Two steps towards proof with correct reasons. | | A3 One question part correctly answered with reasons |

Scoring Rubric

- **N0**: One angle correctly calculated
- **N1**: One question part correctly calculated
- **A3**: One question part correctly answered with reasons
- **A4**: Two question parts of correctly answered (without reasons)
- **M5**: Two question parts correctly calculated, one with reasons given
- **M6**: Two question parts correctly calculated and reasons given, with minor error ignored
- **E7**: One incorrect step in either the reason or calculation in question 1c otherwise correct
- **E8**: Question 1c correctly solved
TWO

(a)

<table>
<thead>
<tr>
<th>(\angle TUR = 78^\circ)</th>
<th>(\angle URT = 75^\circ)</th>
</tr>
</thead>
</table>
| \(\angle TUR = 78^\circ \) Corresponding angles parallel lines
\(\angle URT = 75^\circ \) angle sum of triangle is 180° |

(b)

<table>
<thead>
<tr>
<th>(\frac{x}{100} = \frac{18}{30})</th>
<th>(x = 60 \text{ cm})</th>
</tr>
</thead>
</table>
| In \(\triangle TRU \) and \(TPW \)
\(\angle T \) is common
\(\angle U = \angle W \) and \(\angle R = \angle P \) (corr \(\angle s, // \) lines)
(minimum of two angles the same)
\(\rightarrow \) they are similar \(\triangle s \)
\(\rightarrow \frac{x}{100} = \frac{18}{30} \rightarrow x = 60 \text{ cm} \)
accept an alternative method |

(c)

<table>
<thead>
<tr>
<th>Two steps of calculation correct.</th>
<th>Two calculations with correct reasons.</th>
</tr>
</thead>
</table>
| \(\angle ATF = (90 - 72^\circ) \) (rad \(\bot \) tan)
\(= 18^\circ \)
\(\angle ACT = 144^\circ \) (\(\angle \)sum \(\Delta \), isos \(\Delta \))
\(\angle ABT = 72^\circ \) (\(\angle s \) at circ = \(\frac{1}{2} \angle \) at centre)
\(\angle BFT = (180 - 72)/2^\circ \) (\(\angle \)sum isos \(\Delta \))
\(= 54^\circ \) |
| Or equivalent
Steps are linked with reasoning and able to be followed.
If the candidate has not considered point B to be on the circle then award E7 for the calculation and correct reasoning of
\(\angle ACF = 36^\circ \), or equivalent |

N0

No angle correctly calculated

N1

One angle correctly calculated or problem solved based on incorrect assumption

A3

One question part correctly answered (without reasons)

A4

Two question parts correctly answered

M5

One question part correctly calculated, one with reasons given

M6

Two question parts correctly calculated and reasons given, with minor error ignored

E7

One incorrect step in either the reason or calculation in question 2c otherwise correct

E8

Question 2c correctly solved
Judgement Statement

<table>
<thead>
<tr>
<th>Grade</th>
<th>Score range</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0 – 4</td>
</tr>
<tr>
<td>A</td>
<td>5 – 8</td>
</tr>
<tr>
<td>M</td>
<td>9 – 13</td>
</tr>
<tr>
<td>E</td>
<td>14 – 16</td>
</tr>
</tbody>
</table>

Lower case a, m, e may be used throughout the paper to indicate contributing evidence for overall grades for questions. The upper case A, M and E grades shown at the end of each full question are used to make the final judgement.

The following Mathematics-specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (\(^{\wedge}\)).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate ‘consistency’ where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the ‘correct answer only’ is given and the assessment schedule indicates that more evidence was required.
- # may have been used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- R for ‘rounding error’ and PR for ‘premature rounding’ resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.
- IMS for incorrect mathematical statement.
- PJ for professional judgement.